Semidefinite Relaxations for Best Rank-1 Tensor Approximations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best subspace tensor approximations

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given tensor by a tensor that is sparsely representable. For matrices, i.e. 2-tensors, such a representation can be obtained via the singular value decomposition which allows to compute the best rank k approximations. For t-tensors with t > 2 many generalizations of the singular val...

متن کامل

On best rank n matrix approximations

Article history: Received 31 October 2011 Accepted 15 May 2012 Available online 28 June 2012 Submitted by Volker Mehrmann AMS classification: 15A60 15B48 15A03

متن کامل

Tensor Regression Networks with various Low-Rank Tensor Approximations

Tensor regression networks achieve high rate of compression of model parameters in multilayer perceptrons (MLP) while having slight impact on performances. Tensor regression layer imposes low-rank constraints on the tensor regression layer which replaces the flattening operation of traditional MLP. We investigate tensor regression networks using various low-rank tensor approximations, aiming to...

متن کامل

Semidefinite Relaxations for Integer Programming

We survey some recent developments in the area of semidefinite optimization applied to integer programming. After recalling some generic modeling techniques to obtain semidefinite relaxations for NP-hard problems, we look at the theoretical power of semidefinite optimization in the context of the Max-Cut and the Coloring Problem. In the second part, we consider algorithmic questions related to ...

متن کامل

Rounding Techniques for Semidefinite Relaxations

This report reviews some approximation algorithms for combinatorial optimization problems, based on a semidefinite relaxation followed by randomized rounding.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2014

ISSN: 0895-4798,1095-7162

DOI: 10.1137/130935112